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Abstract-In this paper, general solutions are obtained for the steady-state temperature of heat exchanging 
fluids along the length of a concentric tube heat exchanger. Heat exchanger effectiveness is also obtained 
in terms of the dimensionless exit temperature. Governing equations in non-dimensional differential form 
for the inner and outer fluid streams representing non-adiabatic conditions at the outside surface of the 
outer tube are solved analytically. Both counter-flow and parallel-flow cases are considered. Expressions 
for heat transfer to or from the outside are obtained. Exact agreement with the NTU method for adiabatic 
conditions at the outside surface and also the heat balance analysis provide validation of the generalized 

solution. 

INTRODUCTION 

THIS PAPER presents a theoretical analysis of a 
concentric tube heat exchanger under steady-state con- 
ditions. A general case where the non-adiabatic con- 
dition at the outside surface of the outer pipe exists, 
is considered. In this case, the fluid in the annular 
space exchanges heat with the fluid in the inner pipe 
as well as outside. The analysis allows the prediction 
of the temperatures of the fluid streams along the 
length of such heat exchangers where the commonly 
used LMTD method [l] and/or NTU method [2] do 
not apply. Governing equations in dimensionless 
form are derived for the fluid streams and are solved 
analytically. The inlet temperatures of the fluid 
streams provide the required boundary conditions. 
An expression for the amount of heat transferred 
across the non-adiabatic outside surface is also de- 
veloped. The counter-flow as well as the parallel-flow 
type of concentric tube heat exchanger is analysed. 
Using the present solution, the effect of various 
dimensionless parameters on the performance of a 
concentric tube heat exchanger is shown. These 
solutions, for adiabatic conditions at the outside 
surface, are compared with the NTU method [2]. 

THEORETICAL ANALYSIS 

General solutions for a concentric tube heat ex- 

changer, counter-flow (Fig. l(a)) and parallel-flow 
(Fig. l(b)), are obtained by analytically solving the 
governing differential equations. These equations are 
derived with the following assumptions : 

(1) mass flow rates m, and m2 of the heat exchang- 
ing fluids are constant ; 

(2) inlet fluid temperatures T,i and T2, are constant ; 

(3) temperature of the outside environment (T,) is 
constant ; 

(4) fluid properties are constant ; 
(5) the overall heat transfer coefficients remain 

constant ; 
(6) T, and T, represent average fluid temperatures 

at any section of the inner and annular fluid streams, 
respectively. 

Mathematical model-counter-flow heat exchanger 

Energy balance over a differential element of the 
inner and annular fluid in a counter-flow heat ex- 
changer results in the following differential equations : 

inner pipe 

m,c,$ + U,(T,-T,) = 0; (1) 
1 

annulus 

rn,~,~;+ O,(r,-T,)+U,(r,-T$$=O; 
I I 

(2) 

boundary conditions 

at a, = A,, T,(A,) = T,, (34 

ata, = 0, T,(O) = Tzi (3b) 

where da, and da, represent the differential surface 
areas for the inner and outer pipe, respectively. 

These governing equations are transformed into the 
following dimensionless form : 

inner pipe 

8,-N&+N& = 0; (4) 
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NOMENCLATURE 

surface area of pipe at any section [m*] Greek symbols 
total surface area of the pipe [m*] P defined by equations (8~) and (26~) 
dimensionless surface area of the inner y defined by equations (8b) and (26b) 
pipe at any section, a,/A,, 0 < A < 1 E heat exchanger effectiveness 
specific heat of fluid [J kg-’ K-‘1 0 dimensionless temperature defined by 
heat capacity ratio, m,c,/(m,c,) equation (7a) 
[dimensionless] B first derivative of O(A) with respect to 
diameter of pipe [m] A = dOIdA 
constants 8’ second derivative of O(A) with respect 
dimensionless parameter, to A = d’O/dA 2 

UOaO/(UIa,) = U,A,I(UrA,) L,, & defined by equations (9b) and (27b). 
length of pipe [m] 
mass flow rate [kg s-‘, kg mm’] 
modified number of transfer units based Subscripts 
on inner flow, U,A,/(m,c,) 0 outside or outer pipe 
[dimensionless] 1 inner pipe or fluid in the inner 
number of transfer units as defined in pipe 
NTU method, U, A, /(mc),,, 2 fluid in the annular space 
[dimensionless] e exit 
heat flow rate w] i inlet 
temperature [K, “C] max maximum 
overall heat transfer coefficient min minimum 
[Wmm2Kp’]. ntu NTU method. 

a,= 0 a0 o=Ao ao=O 00 a.,= Ao 

(0) ( b) 

FIG. 1. Schematic diagram of a concentric tube heat exchanger : (a) counter-flow ; (b) parallel-flow. 

annulus number of transfer unit (inner fluid), 

82+(i+~)~C02-~C0, = mco,; (5) N= UIA,l(m,cl) (74 

boundary conditions ratio of overall thermal resistances across the walls 

atA=l, O,(A)=O,i=O (64 K= U,a,I(UlaO = U,A,I(UIAl). (74 

atA = 0, O,(A) = Ozi = 1 (6b) By combining equations (4) and (5) and eliminating 

where the following definitions for the dimensionless 
terms are used : 

dimensionless temperature, 

Tn-T,i 
0” = ~ 

Tzi - T,i’ 
n = 0,1,2 (7a) 

dimensionless area (inner pipe), 

A=a,/A,, O<A< 1 

ratio of heat capacity rate, 

C = (mlcl)/(m2c2) 

(7b) 

(7c) 

the dimensionless temperature O,(A), the following 
equation in 0 I (a) is obtained : 

8’, +yB, +/30, = go, (8a) 

where 

and 

y = N[(l+K)C-l] 

p = -KCN2 

(8b) 

(8~) 

Analytical sohtion (C # 1 ifK = 0) 
The analytical solution for O,(A) from equation 

(8a) is given by 
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B,(A) = Eexp(l,A)+Fexp(1,A)+e, (9a) 

where 

,I,,& = oS[-y+(y2-4jY)“*]. (9b) 

The solution for B,(A) is obtained by substituting 
0,(A) and its first derivative d,(A) from equation (9a) 
into equation (4) and is expressed as 

B,(A) = E(l-ll/N)exp(l,A) 

+F(l-1,/N)exp(i,A)+&. (10) 

Using the boundary conditions from equations (6) 
the constants E and Fare obtained as 

adiabatic condition (U, = 0) at the outside surface of 
the outer pipe. 

Mathematical model-parallel-flow heat exchanger 
A similar theoretical analysis as above for a parallel- 

Bow heat exchanger with non-adiabatic conditions at 
the outside surface of the outer pipe, results in the 
following differential equations : 

inner pipe 

-m,c, g + U,(T,-TT,) = 0; 
1 

annulus 

(20) 

E=Nexp(~2)-e,[N(exp(~2)-1)+~21 
(N-l,)exp(&)-(N-l,)exp(i,) (‘l) m,c,$+ u,(~2-T,)+~0(~2-~0)$=O; 

1 L 

(12) 

Heat transferred to the environment 
The amount of heat transferred to the environment 

through the non-adiabatic outside surface of the outer 
pipe is given by the following integral equation : 

f 

A0 Q. = Uo(T,-To)dA,. (134 
0 

Combining equations (7a)-(7c) and (10) into equa- 
tion (13a) and integrating yields 

Qo = ~~A,(T2i-T,i){E(1-~,lN)[exp(~,)-11/~, 

+F(1-12/N)[exp(12)-11/12}, U, # 0. (13b) 

Analytical solution (C = 1 and K = 0) 
The above general solution for a concentric tube 

counter-flow heat exchanger applies to all values of C 
and K with the exception of C = 1 and K = 0. The 
following solutions are presented for this special case. 
Under these conditions, equation (8a) transforms into 

8, = 0. (14) 

Therefore 

6, =E (15) 

and 

e,(a) = EA+F, (16) 

Substitution of equations (15) and (16) into equation 
(4), yields the following solution for B,(A) : 

B,(A) = E(A- l/N)+F. (17) 

By applying the boundary conditions in equation (6), 
the constants E and Fare determined as 

E= -N/(l+N); ifC=landK=O (18) 

F= N/(l+N); ifC= landK=O. (19) 

The amount of heat transferred (Q,,) to the environ- 
ment, in this case, is zero because K = 0 represents an 

(21) 

boundary conditions 

at a, = 0, T,(O) = Tli Pa) 

at a, = 0, T*(O) = Tzi. (22b) 

Using the dimensionless terms defined in equations 
(7), the above differential equations are transformed 
into the following dimensionless form : 

inner pipe 

annulus 

B,+Ne,--Ne, = 0; (23) 

~,+(l+K)NCf?,-NCB, = KhVt’,; (24) 

boundary conditions 

A = 0, B,(A) = 8,, = 0 (2W 

A = 0, 8,(A) = f& = 1. W) 

Combining equations (23) and (24) and eliminating 
the dimensionless temperature B2, the following equa- 
tion in 0, is obtained : 

B’, +YB, +pe, = Be, (264 

where 

y = N[(l +K)C+ l] 

and 

b = KCN*. 

Analytical solution 

(26b) 

WC) 

The analytical solution for B,(A) from equation 
(26) is given by 

e,(A) = Eexp@,A)+Fexp(1,A)+@, (27a) 

where 

A,,& = 0.5[-y+(r’-4/3)““] (27b) 

and E and Fare constants. Substitution of B,(A) from 
equation (27) and its derivative into equation (23) 
yields the following solution for B,(A) : 
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6,(A) = E(1+1,/N)exp(l,A) 

+F(l+&/N)exp(L4)+0,. (28) 

The constants E and F are determined by applying 
the boundary conditions from equations (25) to equa- 
tions (27) and (28), and found to be 

N+&Bz 
E= I,-&’ 

F= _ N-I-&k 
1, -1, . (29) 

Heat transferred to the outside 

The heat transferred through the outer surface of 
the outer pipe is given by 

Q. = r.ll,(T,--T,)dA,. (30a) 
.cl 

Substitution of equations (7a)-(7c) and (28) into 
equation (30a) and integration yields the following 
expression : 

Qo= U~A~(Tzi-T~i){E(l+~I/N)[exp(~,)-ll/~, 

+F(l+~2/N)[exp(12)-ll/12}, U, # 0. (30b) 

RESULTS 

Solutions for the dimensionless temperatures 8, and 
fJ2 of the fluids as a function of the dimensionless area 
A (0 < A $ 1) are presented for counter-flow as well 
as parallel-flow heat exchangers in this section. Fig- 
ures 2 and 3 show the variation of 0, and e2 as a 
function of A (0 < A < 1) for N = 2, C = 0.5 and 
B,, = 0.5 for non-adiabatic conditions (K = 0.5, 1 .O 
and 2.0) as well as the adiabatic condition (K = 0) at 
the outside surface. Significant variation in the per- 
formance of a double-pipe heat exchanger is observed 
due to non-adiabatic conditions. The influence of the 
outside temperature 0, on 8, and Q2 for C = 0.5, 
N = 2, K = 0.5 is shown in Figs. 4 and 5 and com- 
pared with those for adiabatic conditions (K = 0). 
Figures 6 and 7 present the results for 0, and e2 for 
N = 2, 8, = 0.5 and show the influence of variation 

______ ADIABATIC 

0.2 _ NON-ADIA 

FIG. 2. Variation of 0, and e2 along the length of a counter- 
flow heat exchanger for K = 0,0.5, 1 .O, 2.0. 

as 

0.6 

0 

0.4 

0.2 

-----____ 
lK=O 

‘L5 

12.0 

_ ___ ADIABATIC. K= 0 

_ NON-ADIABATIC 

0.0 I I , I 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 3. Variation of 0, and Q2 ilong the length of a parallel- 
flow heat exchanger for K = 0,0.5, 1 .O, 2.0. 

COUNTER -FLOW, C -0.5 
N12.0 

e 

0.2 _ __--- ADIABATIC. K=O 

_ NON-ADIABATIC 

RO 0.2 0.4 06 0.0 1.0 
A 

FIG. 4. Variation of 0, and t12 along the length of a counter- 
flow heat exchanger for 0, = 0, 0.5, 1.0. 

PARARELL-FLOW. C =0.5 
Nz 2.0 
K ? 0.0.5 

_ _ _ _ ADIABATIC.K=O 

_ NON-ADIABATIC, K-0.5 

0.0 I 1 I 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 5. Variation of 0, and B,ilong the length of a parallel- 
flow heat exchanger for 8, = 0, 0.5, 1.0. 

in the heat capacity ratio C. Results for adiabatic 
(K = 0) as well as non-adiabatic conditions (K = 0.5) 

are also shown in Figs. 6 and 7. The dimensionless 
temperatures Ore and f32c of the fluids at the exit of a 
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COUNTER-FLOW, N = 2.0 

0.2 _ 
- _____ ADIABATIC.K=O 

- NON-ADIABATIC.K-Cl5 

0.4 0.6 0.8 I.0 
A 

FIG. 6. Variation of til and e2 along the length of a counter- 
flow heat exchanger for C = 0, 0.5, 1.0. 

PARALLEL-FLOW. N-2.0 

_ _ _ ADIABATIC. K=O 

_ NON-ADIABAT,C. K=0.5 

00 0.2 0.4 0.6 0.8 to 
A 

FIG. 7. Variation of e1 and ez along the length of a parallel- 
flow heat exchanger for C = 0, 0.5, 1.0. 

double-pipe heat exchanger are shown in Fig. 8 for 
counter-flow and Fig. 9 for parallel-flow as a function 
of N for C = 0.5 and 0, = 0.5. Results for adiabatic 
(K = 0) and non-adiabatic (K= 0.5, 1.0, 2.0) con- 
ditions are shown and compared (Figs. 8 and 9). 

HEAT EXCHANGER EFFECTIVENESS AND 

COMPARISON WITH NTU METHOD 

The results of the present analysis permit deter- 
mination of the heat exchanger effectiveness and are 
compared with the NTU method [l]. The heat ex- 
changer effectiveness, E, as defined in the NTU 
method [l] for m,c, > mzc2 and m,c, < mlcz is used 
for its determination in general and comparison 
with the NTU method for adiabatic conditions (K = 
0) at the outside surface of the heat exchanger. 

For m ,c, < mlcZ (C < l), E for parallel-flow as well 

_-__ ADIABATIC, K=O 

_ NON-ADIABATIC 

0.0 1.0 20 3.0 4.0 5.0 
N 

FIG. 8. Plot of 0,N for a counter-flow heat exchanger 
K= 0, 0.5, 1.0, 2.0. 

PARALLEL-FLOW, C =‘I5 

0.6 - 

$ 
0.5- 

$ 
0.4 - 

___-.- ADIABATIC.K=O 

_ NON-ADIABATIC 

1 

for 

K=O 

0 1 2 3 4 5 

FIG. 9. Plot of 0,-N for a paraf;eMow heat exchanger for 
K= 0, 0.5, 1.0, 2.0. 

as counter-flow is defined as 

TIN - T,i 
E = T,, = Em (31) 

which, with equation (7a) reduces to 

E = he = dCn,u, NTU) (324 



Table 1. Comparison of heat exchanger effectiveness for Table 2. Comparison of heat exchanger effectiveness for 
counter-flow heat exchanger parallel-flow heat exchanger 

Present method Present method 
c with K= 0 NTU method C withK=O NTU method 

Gil N E = e,, G,” = C NTU=N %I, C<l N & = fJc C”, = c NTU= N %I, 

0.5 0.5 0.362 0.5 0.5 0.362 0.5 0.5 0.352 0.5 0.5 0.352 
1.0 0.565 1.0 0.565 1.0 0.518 1.0 0.518 
2.0 0.775 2.0 0.775 2.0 0.633 2.0 0.633 
3.0 0.847 3.0 0.847 3.0 0.659 3.0 0.659 
4.0 0.927 4.0 0.927 4.0 0.665 4.0 0.665 
5.0 0.957 5.0 0.957 5.0 0.666 5.0 0.666 

C=l N -;I:, cm, = c NTU=N 
C=l N ;I;lr, CM” = C NTU= N 

Ze C,,, = l/C NTU = NC En” 2e C,,,, = I/C NTU = NC “” 

1.0 0.5 0.333 1.0 0.5 0.333 1.0 0.5 0.316 1.0 0.5 0.316 
1.0 0.500 1.0 0.500 1.0 0.432 1.0 0.432 
2.0 0.667 2.0 0.667 2.0 0.491 2.0 0.491 
3.0 0.750 3.0 0.750 3.0 0.499 3.0 0.499 
4.0 0.800 4.0 0.800 4.0 0.500 4.0 0.500 
5.0 0.833 5.0 0.833 5.0 0.500 5.0 0.500 

C>l N &=I-& C,,” = l/C NTU = NC E,,” C>l N ~=l-& C,, = l/C NTU = NC E,,, 

2.0 0.5 0.565 0.5 1.0 0.565 2.0 0.5 0.518 0.5 1.0 0.518 
1.0 0.775 2.0 0.775 1.0 0.633 2.0 0.633 
2.0 0.927 4.0 0.927 2.0 0.665 4.0 0.665 
3.0 0.974 6.0 0.974 3.0 0.667 6.0 0.667 
4.0 0.991 8.0 0.991 4.0 0.667 8.0 0.667 
5.0 0.997 10.0 0.997 5.0 0.667 10.0 0.667 
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where tabulated. For C = 0.5 (C < l), equations (32) are 
applicable and E-N are found to be in exact agreement 
with E,,~-NTU obtained by the NTU method [l] for 
counter-flow (Table 1, Fig. 8) as well as parallel-flow 

and (Table 2, Fig. 9). For C = 1, equations (32) and (34) 

NT(J=*=N. 
both are applicable. As shown in Tables 1 and 2, 
results obtained with the present method are identical 

mlcl to those obtained by the NTU method. For C = 2 

For mlcl > m2c2 (C > l), E for parallel-flow as well 
(C > I), equations (34) are used to determine the 

as counter-flow is defined as effectiveness E, NTU and C,,,,. The effectiveness, E,~,, 
obtained by the NTU method is in exact agreement 

TX - T2e TS - T,i 
E=-= 1 __-----_E 

(Tables 1 and 2). 

TZ - Tli T,, - T,i mu (33) 

which, together with equation (7a) reduces to HEAT BALANCE 

E = I-& = E,,,(C,,,,NTU) (344 Expressions for Q, heat transferred through the 

where 
outside surface of the heat exchanger, are provided in 

equations (13b) and (30b). The heat gain Q, and 
Q2 by the fluid in the inner pipe and the annulus, 

c 

n’” 
= W>min 1 

(mc>,ax = c Wb) respectively, can be estimated with the following 
equations : 

and QI = mlclG”l,-TT,i) W4 

NTU===NC, QI = m4T2,- T,i). W) 
m2c2 

Heat exchanger effectiveness, E, calculated with the 
The algebraic sum of Q,,, Q, and Qz 

present method for various values of C and N for 
counter-flow as well as parallel-flow are listed in 

Qo+Q,+Qz =O (36) 

Tables 1 and 2, respectively. The corresponding values would provide further validation of the present 

of CM NTU and heat exchanger effectiveness, E,,,, analysis. 
determined by the NTU method [l] are also A case study is presented here for the parameter 
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Table 3. Parameter values for case study Table 4. Heat balance calculation--case study 

For inner tube For annulus 

m,c, = lOOOOJmin-‘“C-’ 
T,i = lO.Ok 
U, = 25 0 W m-’ “C-’ 
L=2.dm 
D, = 0.05m 
A, = 0.1xm2 

nt2c2 = 2000 OJmin-‘“C-’ 
7-*i = 100.&c 
U = 10.0 Wm-20C-’ 
;=2.0m 
D, = O.lm 
A, = 0.2~ m2 

60 

t _ _ __ ADIABATIC. K=O 
I 

_ NON-ADIABATIC. K=0.8 
To= 20” c 

I 

01 I I I I 

0.0 0.2 0.4 0.6 0.8 I.0 

A= q/A, 

FIG. 10. Plot of T, and T2 along the length of a counter-flow 
heat exchanger. 

Counter-flow Parallel-flow 
u, = 0 ll, = 0 

T, = 20°C Adiabatic T, = 20°C Adiabatic 

wit 1000.0 
m2czt 2000.0 
u, 25.0 
u0 10.0 
A, O.ln 
A0 0.2rr 
T,i 10.0 
TX 100.0 
T0 20.0 

Present method 
N 0.471 
c 0.500 
K 0.800 
80 0.111 
8,. = E 0.322 
@2e 0.700 
T,, 39.005 
2 415.524 73.032 

483.416 
-898.940 

$Q. o 

NTU method 
%%I 
T,, - 

Tze - 

1000.0 1000.0 
2000.0 2000.0 

25.0 25.0 
0 10.0 
0.17K 0.1% 
0.2n 0.2n 

10.0 10.0 
100.0 100.0 
20.0 20.0 

0.471 0.471 0.471 
0.500 0.500 0.500 
0 0.800 0 
0.111 0.111 0.111 
0.347$ 0.311 0.338$ 
0.827 0.708 0.831 

41.230$ 37.941 40.409$ 
84.385$ 73.701 84.7961 
0 410.838 0 

520.494 465.782 506.809 
- 520.494 - 876.620 - 506.809 

0 0 0 

0.347 
41.230 
84.385 

- 

- 

-c; 
NON-ADIABATIC. K=O.B.b=20 C 

0.0 I / I I I 
0.0 0.2 0.4 0.6 0.0 1.0 

A = .,/A, 

FIG. 11. Plot of T, and T2 along the length of a parallel-flow 
heat exchanger. 

values given in Table 3 and the results for counter- 
flow as well as parallel-flow are presented for 
To = 20°C along with those for adiabatic conditions 
(K = 0 or U, = 0) in Figs. 10 and 11, and Table 4. 
The exit temperatures T,, and T,, of the fluids, the 
effectiveness E = el, as well as the values of QO, Q, and 
Q2 obtained by the present method are indicated. 
Verification of the heat balance equation (36) is also 
shown in Table 4. The exit temperatures T,, and Tzc, 

and effectiveness, E, are found to be in exact agreement 
with those obtained by the NTU method and provides 

2000.0 
25.0 
0 
O.lZ 
0.27I 

10.0 
100.0 
20.0 

0.338 
40.409 
84.796 

tin Jmin-‘K-l. 
$ Exact agreement with NTU method. 

further validation of the present analysis. Results 
obtained by the generalized solution (Table 4) for 
non-adiabatic as well as adiabatic conditions are 
found to be in exact agreement with those obtained 
by the analytical method [3]. 

CONCLUSIONS 

Generalized analytical solutions for the steady-state 
temperature of the heat exchanging fluids along the 
length of a counter-flow as well as a parallel-flow 
concentric tube heat exchanger are presented in terms 
of dimensionless parameters. These solutions are 
obtained, in general, for non-adiabatic conditions at 
the outer surface of such heat exchangers. However, 
if adiabatic conditions are assumed at the outside 
surface of the heat exchanger, these solutions are 
identical to those obtained by the NTU method. The 
present analysis also permits the determination of 
the heat exchanger effectiveness, as defined by the 
NTU method, from the dimensionless exit tem- 
peratures of the heat exchanging fluids. Expressions 
for heat transferred to the outside are also obtained. 
A case study is presented showing the heat balance 
for a heat exchanger for the non-adiabatic case as 
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SOLUTION GENERALE ET EFFICACITE DES ECHANGEURS DE CHALEUR A TUBES 
CONCENTRIQUES 

R&m&On obtient des solutions gentrales pour la temperature stationnaire des fluides tchangeant de la 
chaleur, tout le long dun tchangeur a tubes concentriques. On obtient aussi l’eflicacite de l’echangeur en 
fonction de la temperature adimensionnelle de sortie. On r&out analytiquement les equations aux derivees 
partielles adimensionnelles pour les ecoulements inttrieur et externe, pour des conditions non adiabatiques 
a la surface exterieure du tube interne. On considere les cas de contre-courant et de co-courant. Sont 
obtenues des expressions pour le transfert thermique. Un accord exact avec la methode NTU pour les 
conditions adiabatiques a la surface exterieure et aussi avec l’analyse du bilan thermique fournit la 

validation de la solution gentrale. 

VERALLGEMEINERTES BERECHNUNGSVERFAHREN FUR 
DOPPELROHR-WARMETAUSCHER 

Zusammenfassung-In dieser Arbeit wird der stationare Verlauf der Fluidtemperaturen entlang eines 
Doppelrohr-Wlrmetauschers berechnet. Augerdem ergibt sich der Warmetauscher-Wirkungsgrad als 
dimensionslose Austrittstemperatur. Fiir die inneren und augeren Fluidstriime werden die Bilanzgleichungen 
in differentieller dimensionsloser Form angegeben und analytisch gel&t, hierbei wird ein Warmeaustausch 
mit der Umgebung zugelassen und sowohl Gleich- als such Gegenstrom betrachtet. Fiir den Warme- 
transport zur oder von der Umgebung werden Gleichungen angegeben. Das Ergebnis zeigt eine exakte 
Ubereinstimmung mit der NTU-Methode fiir adiabate Bedingungen an der BuDeren Oberflache, ebenso 

bestltigt die Warmebilanz die Giiltigkeit der allgemeinen Losung. 

0606tIIEHHOE PEIIIEHHE H 3@PEKTHBHOCTb &JIJI KOHHEHTPH’IECKHX 
TPYSYATMX TEI-IJIODEMEHHHKOB 

Amsorannn-IIonylienu pacnpenenemin arm craunotiapnofi TeMneparypbi mnn.xocreti no mane KOH- 

ueHTpHwcKOrO Tpy6qaToro TeILIlOO6MeHHHKa. ~Cfl@KTTHBHOCTb B~~EIoAEITcK 'iepe3 6e3pa3MepHyIO TeM- 

nepaTypy Ha sxoite. A~ami~mwmi ~~III~I~TCSI onpenemno~e ypaeHeHm B 6e3pa3MepHofi @opbte .mn 

BHyTpeHHerO H BHeIlIHerO nOTOKOB lKHLU(oCTH npH H~~a6aT&iWCKtiX yCJIOBHllX Ha HapyKCHOfi nOBepX- 

HOCTH BHeLUHefi Tpy6bLPaCCMaTpHBalOTCK CJIyYaH npOTSiBOTOKa H I,pffMOTOKa. ~OJQ’WHbl BhQX3XeHW4 

AJM TenJIOll~HOGl BHyTpb H Happy. Towoe COOTBeTCTBHe C AaHHbWH, nOJly¶eHHbIMH MeTOAOM 

KOJIWieCTBaeJQiHHUne~HOCa&Wl ~a6aTFieCKHXyCJIOBHtiHa BHemHeiinOBepXHOCTH,aTaKlKeaHUlH3 

Ten~oBoro6~aHcaO60cHOB~B~TnpaBoMepH~bo6o6meHHoropemeH~K. 


